Login / Signup

Janus nanocarrier powered by bi-enzymatic cascade system for smart delivery.

Sandra Jimenez-FalcaoNatalia JogaAlba García-FernándezAntoni Llopis LorenteDaniel TorresBeatriz de LuisFélix SancenónPaloma Martínez-RuizRamón Martínez-MáñezReynaldo Villalonga
Published in: Journal of materials chemistry. B (2020)
We report herein the assembly of an integrated nanodevice with bi-enzymatic cascade control for on-command cargo release. This nanocarrier is based on Au-mesoporous silica Janus nanoparticles capped at the mesoporous face with benzimidazole/β-cyclodextrin-glucose oxidase pH-sensitive gate-like ensembles and functionalized with invertase on the gold face. The rationale for this delivery mechanism is based on the invertase-mediated hydrolysis of sucrose yielding glucose, which is further transformed into gluconic acid by glucose oxidase causing the disruption of the pH-sensitive supramolecular gates at the Janus nanoparticles. This enzyme-powered device was successfully employed in the autonomous and on-demand delivery of doxorubicin in HeLa cancer cells.
Keyphrases