Login / Signup

Crystallization Behavior of Isotactic Propene-Octene Random Copolymers.

Miriam ScotiFabio De StefanoAngelo GiordanoGiovanni TalaricoClaudio De Rosa
Published in: Polymers (2022)
The crystallization behavior of random propene-octene isotactic copolymers (iPPC8) prepared with a homogeneous metallocene catalyst has been studied. Samples of iPPC8 with low octene content up to about 7 mol% were isothermally crystallized from the melt at various crystallization temperatures. The samples crystallize in mixtures of the α and γ forms of isotactic polypropylene (iPP). The relative amount of γ form increases with increasing crystallization temperature, and a maximum amount of γ form ( f γ (max)) is achieved for each sample. The crystallization behavior of iPPC8 copolymers is compared with the crystallization from the melt of propene-ethylene, propene-butene, propene-pentene, and propene-hexene copolymers. The results show that the behavior of iPPC8 copolymers is completely different from those described in the literature for the other copolymers of iPP. In fact, the maximum amount of γ form achieved in samples of different copolymers of iPP generally increases with increasing comonomer content, while in iPPC8 copolymers the maximum amount of γ form decreases with increasing octene content. The different behaviors are discussed based on the inclusion of co-monomeric units in the crystals of α and γ forms of iPP or their exclusion from the crystals. In iPPC8 copolymers, octene units are excluded from the crystals giving only the interruption effect that shortens the length of regular propene sequences, inducing crystallization of the γ form at low octene concentrations, lower than 2 mol%. At higher octene concentration, the crystallization of the kinetically favored α form prevails.
Keyphrases
  • room temperature
  • systematic review