Login / Signup

Interfacing metal organic frameworks with polymers or carbon-based materials: from simple to hierarchical porous and nanostructured composites.

Khaled DassoukiSanchari DasguptaEddy DumasNathalie Steunou
Published in: Chemical science (2023)
In the past few years, metal organic frameworks (MOFs) have been assembled with (bio)polymers and a series of carbon-based materials (graphene, graphene oxide, carbon nanotubes, carbon quantum dots, etc .) leading to a wide range of composites differing in their chemical composition, pore structure and functionality. The objective was mainly to overcome the limitations of MOFs in terms of mechanical properties, chemical stability and processability while imparting novel functionality (electron conductivity, (photo)catalytic activity, etc .) and hierarchical porosity. These composites were considered for numerous applications including gas/liquid adsorption and separation, (photo)catalysis, biomedicine, energy storage, conversion and so on. The performance of such composites depends strongly on their microstructural and physico-chemical properties which are mainly driven by the chemical strategies used to design and process such composites. In this perspective article, we propose to cover this topic and provide a useful survey of recent progress in the synthesis and design of MOFs-carbon material composites. This article will describe the development of composites with increasing complexity in terms of porous architecture, spatial structuration and organisation, and functionality.
Keyphrases