Login / Signup

Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.

Suchita Dattatray ShindeNeeraj KulkarniBichismita Sahu
Published in: ACS applied bio materials (2023)
Dipeptides are minimalistic peptide building blocks that form well ordered structures through molecular self-assembly. The driving forces involved are cooperative noncovalent interactions such as π-π stacking, hydrogen bonding, and ionic as well as hydrophobic interactions. One of the most intriguing self-assembled motifs that has been extensively explored as a low molecular weight hydrogel for drug delivery, tissue engineering, imaging and techtonics, etc. is Phe-Phe (FF). The backbone of the dipeptide is very crucial for extending secondary structures in self-assembly, and any subtle change in the backbone drastically affect the molecular recognitions. The squaramide (SQ) motif has the unique advantage of hydrogen bonding which can promote the self-assembly process. In this work we have integrated the SQ unit into the dipeptide FF backbone to achieve molecular self-assembly. The resulting carbamate protected backbone modified dipeptide (BocFSAF-OH, 10 ) has exhibited molecular self-assembly with a fibrilar network. It formed a stable hydrogel (with CAC of 0.024 ± 0.0098 wt %) via the solvent switch method and was found to possess excellent enzymatic stability. The dipeptide and the resulting hydrogel were found to be cytocompatible. When integrated with a polysaccharide based biopolymer, e.g. sodium alginate, the resulting matrix exhibited strong hydrogel character. Therefore, the dipeptide hydrogel of 10 may find its applications in a variety of fields including drug delivery and tissue engineering.
Keyphrases
  • tissue engineering
  • drug delivery
  • high resolution
  • ionic liquid
  • single molecule
  • hydrogen peroxide
  • drug release
  • photodynamic therapy
  • nitric oxide
  • multidrug resistant
  • mass spectrometry