Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV.
Tamires GalloLuigi AdrianoMichael HeymannAgnieszka WronaNoelle WalshGunnar ÖhrwallFlavia CallefoSlawomir SkruszewiczMahesh NamboodiriRicardo Dos Reis Teixeira MarinhoJoachim SchulzJoana ValerioPublished in: Journal of synchrotron radiation (2024)
One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that provide micrometre-thick liquid sheets with high stability, intending to make this technology more widely available to users. Our research is a collaboration between the EuXFEL and MAX IV research facilities. This collaboration aims to develop and refine a 3D-printed flat sheet nozzle design and a versatile jetting platform that is compatible with multiple endstations and measurement techniques. Our flat sheet jet platform improves the stability of the jet and increases its surface area, enabling more precise scanning and differential measurements in X-ray absorption, scattering, and imaging applications. Here, we demonstrate the performance of this new arrangement for a flat sheet jet setup with X-ray photoelectron spectroscopy, photoelectron angular distribution, and soft X-ray absorption spectroscopy experiments performed at the photoemission endstation of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden.