Login / Signup

AC Conductivity Measurements of Ultradilute Colloidal Suspensions in HEPES Buffer.

Aditya Vikram KhandelwalAkash SinghNamrata PalRajdeep KumarGaurav GoelShalini Gupta
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
Impedance spectroscopy was used to probe the AC conductivity of extremely dilute colloidal suspensions (2.5 × 10-5 ≤ Φw/v ≤ 4.0 × 10-2) comprising of polystyrene microspheres (PS; κa ≫ 1 and ζ = -65 mV), gold nanoparticles (Au NPs; κa > 1 and ζ = -26 mV), and Au-coated PS metallodielectric particles (Au-PS) in HEPES buffer. When AC electric fields of strength 10 mV and 1 MHz were applied via 100 μm gap interdigitated microelectrodes across 10 μL samples, a highly resistive (θcapacitive < 1°) and nonmonotonic response was obtained with particle concentrations at steady state. While the suspensions were less resistive (than the buffer) below a critical concentration, they became more resistive above it. More interestingly, particle-particle interactions took place in suspensions with concentrations as low as 0.005% w/v. We believe this unique behavior is linked to the ion size asymmetry in the HEPES molecule that provides an ideal microenvironment for counterionic polarization around the particles. The exact mechanism of polarization in HEPES, however, still remains elusive as the current theoretical models for simple electrolytes fail to explain our data.
Keyphrases