Login / Signup

The development of chiral metal-organic frameworks for enantioseparation of racemates.

Farzana YasmeenUzma YunusMoazzam Hussain BhattiMuhammad SherMuhammad Nadeem
Published in: RSC advances (2023)
MIL-101(Cr), an achiral metal-organic framework, made up of a terephthalic acid ligand and a metal chromium ion was selected as a template. Its structural features are unsaturated Lewis acid sites that can be easily activated and it has an extremely high specific surface area, big pore size, and good thermal/chemical/water stability. This achiral framework was modified to introduce chirality within the structure to develop chiral metal-organic frameworks (CMOFs). Here, natural chiral ligands, amino acids (l-proline, l-thioproline and l-tyrosine), were selected for post synthetic modification (PSM) of MIL-101(Cr). This is a very simple, clean and facile methodology with respect to the reactants and reaction conditions. CMOFs 1-3 abbreviated as MIL-101-l-proline (CMOF-1), MIL-101-l-thioproline (CMOF-2) and MIL-101-l-tyrosine (CMOF-3) were prepared by introducing l-proline, l-thioproline and l-tyrosine as chiral moieties within the framework of (Cr). These CMOFs were characterized by FTIR, PXRD, SEM, and thermo gravimetric analysis. Chirality within these CMOFs 1-3 was established by circular dichroism (CD) and polarimetric methods. These three CMOFs 1-3 showed enantioselectivity towards RS-ibuprofen, RS-mandelic acid and RS-1-phenylethanol to varying extents. Their enantioselectivity towards racemates was studied by chiral HPLC and polarimetry.
Keyphrases
  • metal organic framework
  • capillary electrophoresis
  • ionic liquid
  • mass spectrometry
  • ms ms
  • amino acid
  • simultaneous determination
  • quantum dots