Login / Signup

Stepwise Bi-Bi Bond Formation: From a Bi-centered Radical to Bi4 Butterfly and Bi8 Cuneane-Type Clusters.

Julia KrügerChristoph WölperStephan Schulz
Published in: Inorganic chemistry (2020)
In contrast to their lighter homologues (P, As, Sb), the synthesis of polybismuthane clusters is still restricted to classical solid-state approaches. We herein report on systematic reduction reactions of different bismuth precursors with Ga(I) and Mg(I) complexes. This study not only yielded the first metal-coordinated tetrabismuthane ([{L1(Cl)Ga}2-μ,η1:1-Bi4] 3, L1 = HC[C(Me)N(2,6-i-Pr2C6H3)]2) and realgar-type bismuth cluster ([(L2Mg)4(μ4,η2:2:2:2-Bi8)] 4, L2 = HC[C(Me)N(2,4,6-Me3C6H2)]2) in addition to the bismuth-centered radical [L1Ga(Cl)]2Bi• 1 and dibismuthene [L1(Cl)GaBi]2 2, but clearly demonstrates the crucial role of the substituents and the oxidation state of the bismuth precursor as well as the specific reduction potential of the main group metal reductants on the product formation. Compounds 3 and 4 were spectroscopically characterized (1H, 13C NMR, IR), and the structures of 1-4 were determined by single-crystal X-ray diffraction. Computational calculations gave deeper insights into the electronic structures of 1', 3', and 4'.
Keyphrases
  • solid state
  • pet ct
  • high resolution
  • magnetic resonance
  • computed tomography
  • mass spectrometry
  • nitric oxide
  • oxide nanoparticles