Login / Signup

Study on the effects of alcohol-enhanced air sparging remediation in a benzene-contaminated aquifer: a new insight.

Yuehua ChangMeng YaoJing BaiYongsheng Zhao
Published in: Environmental science and pollution research international (2019)
In this study, the effects of medium carbon chain alcohol (1-heptanol)-enhanced air sparging (AS) on the remediation of benzene-contaminated aquifers in different media (medium sand, channelized flow; gravel, bubbly flow) were investigated by comparison with a commonly used surfactant (sodium dodecylbenzene sulfonate (SDBS)). The results showed that the addition of 1-heptanol and SDBS significantly increased the air saturation in AS process under different airflow modes. Combined with water retention curves, 1-heptanol had the same effect on reducing the surface tension of groundwater and stabilizing bubbles as SDBS. In the study of benzene pollution removal, when the removal efficiency of the benzene pollutant exceeded 95%, the time required for surfactant-enhanced AS (SEAS) and alcohol-enhanced AS (AEAS) in medium sand was shortened by 28.6% and 52.4%, respectively, and the time required for SEAS and AEAS in gravel media was shortened by 16.7% and 58.3%, respectively, compared with the time required for AS. This finding indicated that the addition of SDBS or 1-heptanol could significantly increase the removal rate of benzene pollutants. Under the same surface tension conditions, the removal effect of 1-heptanol on the benzene pollutant was better than that of SDBS. This difference was due to the disturbance of the flow field during AEAS process causing the 1-heptanol on the gas-liquid interface to volatilize in the carrying gas, thereby inducing Marangoni convection on the interface, enhancing the gas-liquid mass transfer rate, and increasing the removal rate of benzene on the interface. Therefore, 1-heptanol is promising as a new reagent to enhance AS to remediate groundwater pollution.
Keyphrases
  • heavy metals
  • drinking water
  • health risk assessment
  • human health
  • particulate matter
  • mass spectrometry
  • atomic force microscopy