Development of a New FR-Targeting Agent 99mTc-HYNFA with Improved Imaging Contrast and Comparison of Multimerization and/or PEGylation Strategies for Radio-Folate Modification.
Zhide GuoLinyi YouChangrong ShiManli SongMengna GaoDuo XuChenyu PengRongqiang ZhuangTing LiuXinhui SuJin DuXianzhong ZhangPublished in: Molecular pharmaceutics (2017)
This study aims to develop a new folate receptor (FR)-targeting agent for SPECT imaging with improved contrast and evaluate the modification strategies of multimerization and/or PEGylation in the development of new radio-folates. A series of novel folate derivatives have been synthesized and radiolabeled with 99mTc using tricine and TPPTS as coligands. To better investigate their pharmacokinetics, cell uptake, biodistribution, and microSPECT/CT imaging were evaluated. Four radioligands displayed high KB cell uptake after incubation for 2 and 4 h. Presaturated with excess folic acid (FA) resulted in a significant blocking effect in KB cells, indicating specificity of these radioligands toward FR. Biodistribution and microSPECT imaging studies in KB tumor-bearing mice showed that the folate conjugate 99mTc-HYNFA with poly(ethylene glycol) (PEG) and triazole linkage displayed the highest tumor uptake (16.30 ± 2.01 %ID/g at 2 h p.i. and 14.9 ± 0.62 %ID/g at 4 h p.i. in mice biodistribution) and best imaging contrast, indicating promising application prospect. More interestingly, the in vivo performance of this monomeric 99mTc-HYNFA was much better than that of FA multimers and non-PEGylated monomers, suggesting that multimerization may not be a feasible method for the design of radio-folates. PEG linkage rather than FA multimerization should be taken into consideration in the development of folate-based radiopharmaceuticals in the future.
Keyphrases
- high resolution
- magnetic resonance
- drug delivery
- contrast enhanced
- computed tomography
- single cell
- magnetic resonance imaging
- type diabetes
- stem cells
- cell therapy
- genome wide
- signaling pathway
- metabolic syndrome
- dna methylation
- current status
- cell proliferation
- mesenchymal stem cells
- high fat diet induced
- cell cycle arrest
- insulin resistance
- endoplasmic reticulum stress