Preparation and Characterization of Electrostatically Crosslinked Polymer⁻Liposomes in Anticancer Therapy.
Yi-Ting ChiangSih-Ying LyuYu-Han WenChun-Liang LoPublished in: International journal of molecular sciences (2018)
pH-sensitive polymer⁻liposomes can rapidly release their payloads. However, it is difficult to simultaneously achieve stability and pH-responsiveness in the polymer⁻liposomes. In this study, stable and pH-sensitive crosslinked polymer⁻liposomes were fabricated through electrostatic interactions. The pH-sensitive copolymer methoxy poly(ethylene glycol)-block-poly(methacrylic acid)-cholesterol (mPEG-b-P(MAAc)-chol) and crosslinking reagent poly(ethylene glycol) with end-capped with lysine (PEG-Lys2) were synthesized and characterized. At physiological conditions, the pH-sensitive copolymers were anionic and interacted electrostatically with the cationic crosslinker PEG-Lys2, forming the electrostatically-crosslinked polymer⁻liposomes and stabilizing the liposomal structure. At pH 5.0, the carboxylic groups in mPEG-b-P(MAAc)-chol were neutralized, and the liposomal structure was destroyed. The particle size of the crosslinked polymer⁻liposomes was approximately 140 nm and the polymer⁻liposomes were loaded with the anticancer drug doxorubicin. At pH 7.4, the crosslinked polymer⁻liposomes exhibited good stability with steady particle size and low drug leakage, even in the presence of fetal bovine serum. At pH 5.0, the architecture of the crosslinked polymer⁻liposomes was damaged following rapid drug release, as observed by using transmission electron microscopy and their apparent size variation. The crosslinked polymer⁻liposomes were pH-sensitive within the endosome and in the human breast cancer cells MDA-MB-231, as determined by using confocal laser scanning microscopy. The intracellular drug release profiles indicated cytotoxicity in cancer cells. These results indicated that the highly-stable and pH-sensitive electrostatically-crosslinked polymer⁻liposomes offered a potent drug-delivery system for use in anticancer therapies.