Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments.
Olatunde A BhadmusBaffour Badu-AprakuOyenike A AdeyemoAdebayo L OgunkanmiPublished in: Plants (Basel, Switzerland) (2021)
An increase in the average global temperature and drought is anticipated in sub-Saharan Africa (SSA) as a result of climate change. Therefore, early white quality protein maize (QPM) hybrids with tolerance to combined drought and heat stress (CDHS) as well as low soil nitrogen (low-nitrogen) have the potential to mitigate the adverse effects of climate change. Ninety-six early QPM hybrids and four checks were evaluated in Nigeria for two years under CDHS, low-nitrogen, and in optimal environments. The objectives of this study were to determine the gene action conditioning grain yield, assess the performance of the early QPM inbred lines and identify high yielding and stable QPM hybrids under CDHS, low-nitrogen and optimal environment conditions. There was preponderance of the non-additive gene action over the additive in the inheritance of grain yield under CDHS environment conditions, while additive gene action was more important for grain yield in a low-nitrogen environment. TZEQI 6 was confirmed as an inbred tester under low N while TZEQI 113 × TZEQI 6 was identified as a single-cross tester under low-nitrogen environments. Plant and ear aspects were the primary contributors to grain yield under CDHS and low-nitrogen environments. TZEQI 6 × TZEQI 228 and the check TZEQI 39 × TZEQI 44 were the highest yielding under each stress environment and across environments. Hybrid TZEQI 210 × TZEQI 188 was the most stable across environments and should be tested on-farm and commercialized in SSA.