Login / Signup

Surface Diffusion-Limited Growth of Large and High-Quality Monolayer Transition Metal Dichalcogenides in Confined Space of Microreactor.

Hiroo SuzukiRyoki HashimotoMasaaki MisawaYijun LiuMisaki KishibuchiKentaro IshimuraKenji TsurutaYasumitsu MiyataYasuhiko Hayashi
Published in: ACS nano (2022)
Transition metal dichalcogenides (TMDCs), including MoS 2 and WS 2 , are potential candidates for next-generation semiconducting materials owing to their atomically thin structure and strong optoelectrical responses, which allow for flexible optoelectronic applications. Monolayer TMDCs have been grown utilizing chemical vapor deposition (CVD) techniques. Enhancing the domain size with high crystallinity and forming heterostructures are important topics for practical applications. In this study, the size of monolayer WS 2 increased via the vapor-liquid-solid growth-based CVD technique utilizing the confined space of the substrate-stacked microreactor. The use of spin-coated metal salts (Na 2 WO 4 and Na 2 MoO 4 ) and organosulfur vapor allowed us to precisely control the source supply and investigate the growth in a systematic manner. We obtained a relatively low activation energy for growth (1.02 eV), which is consistent with the surface diffusion-limited growth regime observed in the confined space. Through systematic photoluminescence (PL) analysis, we determined that a growth temperature of ∼820 °C is optimal for producing high-quality WS 2 with a narrow PL peak width (∼35 meV). By controlling the source balance of W and S, we obtained large-sized fully monolayered WS 2 (∼560 μm) and monolayer WS 2 with bilayer spots (∼1100 μm). Combining two distinct sources of transition metals, WS 2 /MoS 2 lateral heterostructures were successfully created. In electrical transport measurements, the monolayer WS 2 grown under optimal conditions has a high on-current (∼70 μA/μm), on/off ratio (∼5 × 10 8 ), and a field-effect mobility of ∼7 cm 2 /(V s). The field-effect transistor displayed an intrinsic photoresponse with wavelength selectivity that originated from the photoexcited carriers.
Keyphrases
  • transition metal
  • room temperature
  • quantum dots
  • minimally invasive
  • gold nanoparticles
  • ionic liquid
  • human health
  • density functional theory
  • capillary electrophoresis