Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions.
Zixin WangHui WangPublished in: ACS applied materials & interfaces (2023)
The past decade has witnessed rapidly growing interest in noble metal nanostructures adopting unconventional metastable crystal phases. In the case of Ru, chemically synthesized nanocrystals typically form thermodynamically favored hexagonal close-packed (hcp) crystal lattices, whereas it remains significantly more challenging to synthesize Ru nanocrystals in the metastable face-centered cubic (fcc) phase. In this work, we have synthesized polydopamine (PDA)-supported hcp and fcc Ru nanocrystals in a phase-selective manner through one-pot thermal reduction of appropriate Ru(III) precursors in a polyol solvent. Benefiting from the unique surface-adhesion function of PDA, we have been able to grow phase-controlled sub-5 nm Ru nanocrystals directly on colloidal PDA supports without prefunctionalizing the particle surfaces with any molecular linkers or surface-capping ligands. Success in phase-controlled synthesis of capping ligand-free Ru nanocrystals dispersed on the same support material enables us to systematically compare the intrinsic mass-specific and surface-specific activities of fcc and hcp Ru nanocatalysts toward the aerobic oxidation of a chromogenic molecular substrate, 3,3',5,5'-tetramethylbenzidine (TMB), under a broad range of reaction conditions. We use UV-vis absorption spectroscopy to monitor the conversion of the reactant molecules into the one-electron and two-electron oxidation products in real time during Ru-catalyzed oxidation of TMB, which is found to be a mechanistically complex molecule-transforming process involving multiple elementary steps. The apparent reaction rates and detailed kinetic features are observed to be not only intimately related to the crystalline structures of the Ru nanocatalysts but also profoundly influenced by several other critical factors, such as the pH of the reaction medium, the initial concentration of TMB, Ru coverage on the PDA supports, and degree of nanoparticle aggregation.