Login / Signup

Arterial wall shear rate response to reactive hyperaemia is markedly different between young and older humans.

Kunihiko AizawaAlessandro RamalliSara SbragiPiero TortoliFrancesco CasanovaCarmela MorizzoClare E ThornAngela C ShorePhillip E GatesCarlo Palombo
Published in: The Journal of physiology (2019)
The vasodilatory response to reactive hyperaemia is impaired with age, but it is unknown whether this is because of an altered wall shear rate (WSR) stimulus or an altered flow-mediated dilatation (FMD) response to the WSR stimulus. Inherent difficulties in measuring blood flow velocity close to the arterial wall have prevented detailed assessment of the WSR-FMD response. Using an enhanced multigate spectral Doppler ultrasound system (ultrasound advanced open platform), we aimed to produce new data on the WSR-FMD relationship in healthy older adults. Sixty healthy people, comprising 28 young (27.5 ± 5.5 years) and 32 older (64.9 ± 3.7 years) individuals, underwent FMD assessment. Raw data were post-processed using custom-designed software to obtain WSR and diameter parameters. The data revealed that older people have a much altered and diminished WSR response to reactive hyperaemia compared to younger people [e.g. WSR peak: 622 (571-673) vs. 443 (396-491) 1/s in young and older respectively; P < 0.05]. However, reduced WSR alone does not appear to fully explain the reduced FMD response in older people because associations between WSR and FMD were few and weak. This was in contrast to young adults, where associations were strong. We conclude that WSR during FMD is much altered and diminished in older people, and there appears to be an 'uncoupling' of WSR from FMD in older people that may reflect a loss of precision in the reactive hyperaemia stimulus-response relationship. These findings also point to the importance and utility of comprehensively characterizing the WSR-FMD response when using reactive hyperaemia to assess vascular function.
Keyphrases
  • blood flow
  • middle aged
  • young adults
  • physical activity
  • magnetic resonance imaging
  • electronic health record
  • community dwelling
  • big data
  • computed tomography
  • machine learning
  • minimally invasive
  • deep learning