Real-Time Monitoring of Bond Slip between GFRP Bar and Concrete Structure Using Piezoceramic Transducer-Enabled Active Sensing.
Kai XuChangchun RenQingshan DengQingping JinXuemin ChenPublished in: Sensors (Basel, Switzerland) (2018)
Glass fiber-reinforced polymers (GFRPs) have received increasing attention in recent years due to their overall performance of light weight, low cost and corrosion resistance, and they are increasingly used as reinforcement in concrete structures. However, GFRP material has low elastic modulus and linear elastic properties compared with steel bars, which introduces different bonding characteristics between bars and concrete. Therefore, a reliable monitoring method is urgently needed to detect the bond slip in GFRP-reinforced concrete structures. In this paper, a piezoceramic-based active sensing approach is proposed and developed to find the debonding between a GFRP bar and the concrete structure. In the proposed method, we utilize PZT (lead zirconate titanate) as two transducers. One acts as an actuator which is buried in the concrete structure, and the other acts as a sensor which is attached to the GFRP bar by taking advantage of machinability of the GRRP material. Both transducers are strategically placed to face each other across from the interface between the GFRP bar and the concrete. The actuator provokes a stress wave that travels through the interface. Meanwhile, the PZT patch that is attached to the GFRP bar is used to detect the propagating stress wave. The bonding condition determines how difficult it is for the stress wave traveling through the interface. The occurrence of a bond slip leads to cracks between the bar and the concrete, which dramatically reduces the energy carried by the stress wave through the interface. In this research, two specimens equipped with the PZT transducers are fabricated, and pull-out tests are conducted. To analyze the active sensing data, we use wavelet packet analysis to compute the energy transferred to the sensing PZT patch throughout the process of debonding. Experimental results illustrate that the proposed method can accurately capture the bond slip between the GFRP bar and the concrete.