Login / Signup

Third-order nanocircuit elements for neuromorphic engineering.

Suhas KumarR Stanley WilliamsZiwen Wang
Published in: Nature (2020)
Current hardware approaches to biomimetic or neuromorphic artificial intelligence rely on elaborate transistor circuits to simulate biological functions. However, these can instead be more faithfully emulated by higher-order circuit elements that naturally express neuromorphic nonlinear dynamics1-4. Generating neuromorphic action potentials in a circuit element theoretically requires a minimum of third-order complexity (for example, three dynamical electrophysical processes)5, but there have been few examples of second-order neuromorphic elements, and no previous demonstration of any isolated third-order element6-8. Using both experiments and modelling, here we show how multiple electrophysical processes-including Mott transition dynamics-form a nanoscale third-order circuit element. We demonstrate simple transistorless networks of third-order elements that perform Boolean operations and find analogue solutions to a computationally hard graph-partitioning problem. This work paves a way towards very compact and densely functional neuromorphic computing primitives, and energy-efficient validation of neuroscientific models.
Keyphrases
  • artificial intelligence
  • machine learning
  • deep learning
  • big data
  • density functional theory
  • atomic force microscopy
  • convolutional neural network
  • clinical evaluation