Elaboration of novel polyaniline@Almond shell biocomposite for effective removal of hexavalent chromium ions and Orange G dye from aqueous solutions.
Abdelghani HsiniAbdelilah EssekriNouh AarabMohamed LaabdAbdelaziz Ait AddiRajae LakhmiriAbdallah AlbourinePublished in: Environmental science and pollution research international (2020)
A novel polyaniline@Almond shell (PANI@AS) biocomposite was synthesized via facile in situ chemical polymerization method. The as-synthesized adsorbent was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and potentiometric titration. A batch adsorption system was applied with the aim of investigating as-synthesized adsorbent ability to remove Cr(VI) ions and Orange G (OG) textile dye from aqueous solutions. Obtained results revealed that adsorption process was strongly depended upon the physicochemical parameters. The adsorption of Cr(VI) and OG dye onto PANI@AS was better described by the pseudo second-order-kinetic model and followed the Freundlich isotherm model. The maximum uptakes were 335.25 for Cr(VI) and 190.98 mg g-1 for OG dye. We further evaluated that PANI@AS biocomposite could be regenerated easily with NaOH solution and efficiently reused for Cr(VI) and OG dye removal from aqueous media. Thus, these results indicated the potential practical application of PANI@AS biocomposite for wastewater treatment.