Login / Signup

Carbonic Anhydrases: Different Active Sites, Same Metal Selectivity Rules.

Nikoleta KirchevaSilvia E AngelovaTodor Dudev
Published in: Molecules (Basel, Switzerland) (2024)
Carbonic anhydrases are mononuclear metalloenzymes catalyzing the reversible hydration of carbon dioxide in organisms belonging to all three domains of life. Although the mechanism of the catalytic reaction is similar, different families of carbonic anhydrases do not have a common ancestor nor do they exhibit significant resemblance in the amino acid sequence or the structure and composition of the metal-binding sites. Little is known about the physical principles determining the metal affinity and selectivity of the catalytic centers, and how well the native metal is protected from being dislodged by other metal species from the local environment. Here, we endeavor to shed light on these issues by studying (via a combination of density functional theory calculations and polarizable continuum model computations) the thermodynamic outcome of the competition between the native metal cation and its noncognate competitor in various metal-binding sites. Typical representatives of the competing cations from the cellular environments of the respective classes of carbonic anhydrases are considered. The calculations reveal how the Gibbs energy of the metal competition changes when varying the metal type, structure, composition, and solvent exposure of the active center. Physical principles governing metal competition in different carbonic anhydrase metal-binding sites are delineated.
Keyphrases
  • density functional theory
  • molecular dynamics
  • mental health
  • carbon dioxide
  • amino acid
  • molecular dynamics simulations
  • ionic liquid
  • single cell
  • multidrug resistant
  • crystal structure
  • transition metal