Molecular Cooperative Assembly-Mediated Synthesis of Ultra-High-Performance Hard Carbon Anodes for Dual-Carbon Sodium Hybrid Capacitors.
Hui-Ju KangYoung-Kyu HanWon Bin ImYoung-Si JunPublished in: ACS nano (2019)
Although sodium hybrid capacitors (NHCs) have emerged as one of the most promising next-generation energy storage systems, further advancement is delayed primarily by the absence of high-performance battery-type anodes. Herein, we report a nature-inspired synthesis route to prepare hard carbon anodes with high capacity, rate capability, and cycle stability for dual-carbon NHCs. Shape- and size-controllable crystal aggregates of inexpensive triazine molecules are utilized as reactive templates that perform triple duties of structure-directing agent, porogen, and nitrogen source. This enables the fine control of microstructure/morphology/composition and thereby electrochemical reactions toward Na-ion. The resulting hard carbon optimized in terms of lateral size, interlayer spacing, and surface affinity of graphene-like layers achieves a specific capacity of ∼380 mAh/g after 100 cycles at a current density of 250 mA/g mainly via intercalation, the current record of hard carbons. Combined with a commercial microporous carbon fiber cathode, the full cell is able to deliver a volumetric energy density of 2.89 mWh/cm3 and a volumetric power density of 160 mW/cm3, outperforming NHCs based on inorganic Na-ion anode materials. More importantly, such performance could not only be retained for 10000 cycles (4.5 F/cm3 at 10 mA/cm3) with 0.000 028 6% loss per cycle at >97% Coulombic efficiency but also successfully transferred to flexible pouch cells without significant performance loss after 300 bending cycles or during wrapping at a 10R condition. Simple preparation of hard carbon anodes using organic crystal reactive templates, therefore, demonstrates great potential for the manufacture of high-performance flexible NHCs using only carbon electrode materials.