Login / Signup

Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory.

Sridevi SrinivasanShiny Duela Johnson
Published in: Cognitive neurodynamics (2024)
Schizophrenia (SZ) is a mental disorder that causes lifelong disorders based on delusions, cognitive deficits, and hallucinations. By visual assessment, SZ diagnosis is time-consuming and complicated, because brain states are more effectively revealed by electroencephalogram (EEG) signals, which are effectively used in SZ diagnosis. The application of existing deep learning methods in SZ detection is effective in the classification of 2-dimensional images, and these methods require more computational resources. Therefore, dimensionality reduction is necessary for SZ diagnosis using EEG signals. To reduce the dimensionality of the data, an improved CAO (ICAO) dimensionality reduction method is proposed, which integrates horizontal and vertical crossover approaches with AOA. The optimal feature subset is achieved by satisfying the ICAO conditions, and a fitness function is evaluated based on rough sets for improved accuracy in feature selection. Therefore a Crossover-boosted Archimedes optimization algorithm (AOA) with rough sets for Schizophrenia detection (CAORS-SD) was proposed using multichannel EEG signals from both SZ and normal patients. The signals are decomposed using multivariate empirical mode decomposition into multivariate intrinsic mode functions (MIMFs). Entropy metrics such as spectral entropy, permutation entropy, approximate entropy, sample entropy, and SVD entropy are evaluated on the MIMF domain to detect SZ. The processing time of the kernel support vector machine classifier is minimized with fewer features, reducing the risk Fof overfitting. Accuracy, sensitivity, specificity, precision, and F1-score of the CAORS-SD model should be conducted to diagnose SZ. Therefore, the proposed CAORS-SD method achieves the higher performance of accuracy, sensitivity, specificity, precision, and F1-score values of 96.34, 98.95, 96.86, 98.52, and 96.74% respectively. Also, the CAORS-SD method minimizes the error rate and significantly reduces the execution time.
Keyphrases