Login / Signup

Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast-Charging Lithium-Ion Batteries.

Bei WuShuwen NiuChao WangGeng WuYida ZhangXiao HanPeigen LiuYue LinWensheng YanGongming WangXun Hong
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Transition metal oxides with high theoretical capacities are promising anode materials for lithium-ion batteries (LIBs). However, the sluggish reaction kinetics remain a bottleneck for fast-charging applications due to its slow Li + migration rate. Herein, a strategy is reported of significantly reducing the Li + diffusion barrier of amorphous vanadium oxide by constructing a specific ratio of the VO local polyhedron configuration in amorphous nanosheets. The optimized amorphous vanadium oxide nanosheets with a ratio ≈1:4 for octahedron sites (O h ) to pyramidal sites (C 4v ) revealed by Raman spectroscopy and X-ray absorption spectroscopy (XAS) demonstrate the highest rate capability (356.7 mA h g -1 at 10.0 A g -1 ) and long-term cycling life (455.6 mA h g -1 at 2.0 A g -1 over 1200 cycles). Density functional theory (DFT)calculations further verify that the local structure (O h :C 4v = 1:4) intrinsically changes the degree of orbital hybridization between V and O atoms and contributes to a higher intensity of electron occupied states near the Fermi level, thus resulting in a low Li + diffusion barrier for favorable Li + transport kinetics. Moreover, the amorphous vanadium oxide nanosheets possess a reversible VO vibration mode and volume expansion rate close to 0.3%, as determined through in situ Raman and in situ transmission electron microscopy.
Keyphrases