Discovering the pharmacodynamics of conolidine and cannabidiol using a cultured neuronal network based workflow.
G D C MendisG BereckiE MorrisroeS PacherneggM LiM VarneyPeregrine B OsborneC A ReidS HalgamugeS PetrouPublished in: Scientific reports (2019)
Determining the mechanism of action (MOA) of novel or naturally occurring compounds mostly relies on assays tailored for individual target proteins. Here we explore an alternative approach based on pattern matching response profiles obtained using cultured neuronal networks. Conolidine and cannabidiol are plant-derivatives with known antinociceptive activity but unknown MOA. Application of conolidine/cannabidiol to cultured neuronal networks altered network firing in a highly reproducible manner and created similar impact on network properties suggesting engagement with a common biological target. We used principal component analysis (PCA) and multi-dimensional scaling (MDS) to compare network activity profiles of conolidine/cannabidiol to a series of well-studied compounds with known MOA. Network activity profiles evoked by conolidine and cannabidiol closely matched that of ω-conotoxin CVIE, a potent and selective Cav2.2 calcium channel blocker with proposed antinociceptive action suggesting that they too would block this channel. To verify this, Cav2.2 channels were heterologously expressed, recorded with whole-cell patch clamp and conolidine/cannabidiol was applied. Remarkably, conolidine and cannabidiol both inhibited Cav2.2, providing a glimpse into the MOA that could underlie their antinociceptive action. These data highlight the utility of cultured neuronal network-based workflows to efficiently identify MOA of drugs in a highly scalable assay.