Login / Signup

Analysis of endogenous NOTCH1 from POFUT1 S162L patient fibroblasts reveals the importance of the O -fucose modification on EGF12 in human development.

Kenjiroo MatsumotoKelvin B LutherRobert S Haltiwanger
Published in: bioRxiv : the preprint server for biology (2024)
NOTCH1 (N1) is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O -fucosyltransferase 1 (POFUT1) adds O -fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of N1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O -fucose on N1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous N1 from control and patient fibroblasts and analyzed O -fucosylation using mass spectral glycoproteomics methods. N1 EGF8 to EGF12 comprise the ligand binding domain, and O -fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of N1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O -fucose at EGF12. Since the loss of O -fucose on EGF12 is known to have significant effects on N1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.
Keyphrases
  • growth factor
  • case report
  • induced apoptosis
  • cell proliferation
  • magnetic resonance imaging
  • cell surface
  • magnetic resonance
  • cell death
  • physical activity
  • mass spectrometry
  • bone marrow