Improving soil phosphorus availability in saline areas by marine bacterium Bacillus paramycoides.
Zhe LiZhe LiuYing WangXiaofang WangPing LiuMingyue HanWeizhi ZhouPublished in: Environmental science and pollution research international (2023)
The utilization of phosphate-solubilizing bacteria (PSB) in agriculture has long been proposed as an eco-friendly method to enhance soil phosphorus (P) availability, thereby reducing reliance on chemical P fertilizers. However, their application in saline soils is challenged by salt-induced stress on common PSB strains. In this study, we sourced bacterial strains from marine environments, aiming to identify robust PSB strains adaptable to saline conditions and assess their potential as P bio-fertilizers through a microcosm experiment. Our findings indicate that the inoculation of a selected marine PSB, Bacillus paramycoides 3-1a, increased soil available P content by 12.5% when applied alone and by 61.2% when combined with organic amendments. This enhancement results from improved inorganic P solubilization and organic P mineralization in soils. Additionally, these treatments raised soil nitrogen levels, reshaped microbial community structures, and significantly enhanced wheat (Triticum aestivum L.) growth, with P accumulation increasing by 24.2-40.9%. Our results underscore the potential of marine PSB in conjunction with organic amendments for the amelioration of saline agricultural soils.