Login / Signup

Carbonyl mediated fluorescence in aceno[ n ]helicenones and fluoreno[ n ]helicenes.

Michal ŠámalLudmilla SturmMarzena BanasiewiczIrena DeperasinskaBolesław KozankiewiczOlaf W MorawskiYuuya NagataPierre DechambenoitHarald BockAmandine RosselMiloš BuděšínskýAnthony BoudierAndrej Jančařík
Published in: Chemical science (2024)
Helicenes are very attractive chiral non-planar polycyclic aromatic hydrocarbons possessing strong chiroptical properties. However, most of the helicenes absorb light mainly in the ultraviolet region, with only a small segment in the blue part of the visible spectrum. Furthermore, carbo[ n ]helicenes exhibit only weak luminescence that limits their utilization. Herein, we demonstrate that peripheral decoration of the helicene backbone with an aryl-carbonyl group shifts the absorption to the visible region and simultaneously improves their fluorescence quantum yields. We thus show that the carbonyl group, commonly considered as detrimental to emission, has the capability of improving optical and photophysical properties. Two different families, aceno[ n ]helicenones and fluoreno[ n ]helicenes, are presented with comprehensive spectrochemical characterization. TD-DFT calculations were implemented to clarify their electronic profiles. We show that increasing the helical length in aceno[ n ]helicenes increases absorption onset, g abs and g lum . Extension of the peripheral aromatic part in fluoreno[ n ]helicenes leads to a blue shift in both absorption and emission.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • energy transfer
  • molecular dynamics
  • density functional theory
  • high resolution
  • mass spectrometry
  • molecular docking
  • chemotherapy induced