Login / Signup

The effects of high altitude ascent on splenic contraction and the diving response during voluntary apnoea.

Pontus K HolmströmJordan D BirdScott F ThrallAnn KalkerBrittney A HerringtonJan E SorianoLeah M MannZahrah H RampuriTom D BrutsaertØyvind KarlssonMingma T SherpaErika K A SchagatayTrevor A Day
Published in: Experimental physiology (2020)
Voluntary apnoea causes splenic contraction and reductions in heart rate (HR; bradycardia), and subsequent transient increases in haemoglobin concentration ([Hb]). Ascent to high altitude (HA) induces systemic hypoxia and reductions in oxygen saturation ( S p O 2 ), which may cause tonic splenic contraction, which may contribute to haematological acclimatization associated with HA ascent. We measured resting cardiorespiratory variables (HR, S p O 2 , [Hb]) and resting splenic volume (via ultrasound) during incremental ascent from 1400 m (day 0) to 3440 m (day 3), 4240 m (day 7) and 5160 m (day 10) in non-acclimatized native lowlanders during assent to HA in the Nepal Himalaya. In addition, apnoea-induced responses in HR, S p O 2 and splenic volume were measured before and after two separate voluntary maximal apnoeas (A1-A2) at 1400, 3440 and 4240 m. Resting spleen volume decreased -14.3% (-15.2 ml) per 1000 m with ascent, from 140 ± 41 ml (1400 m) to 108 ± 28 ml (3440 m; P > 0.99), 94 ± 22 ml (4240 m; P = 0.009) and 84 ± 28 ml (5160 m; P = 0.029), with concomitant increases in [Hb] from 125 ± 18.3 g l-1 (1400 m) to 128 ± 10.4 g l-1 (3440 m), 138.8 ± 12.7 g l-1 (4240 m) and 157.5 ± 8 g l-1 (5160 m; P = 0.021). Apnoea-induced splenic contraction was 50 ± 15 ml (1400 m), 44 ± 17 ml (3440 m; P > 0.99) and 26 ± 8 ml (4240 m; P = 0.002), but was not consistently associated with increases in [Hb]. The apnoea-induced bradycardia was more pronounced at 3440 m (A1: P = 0.04; A2: P = 0.094) and at 4240 m (A1: P = 0.037 A2: P = 0.006) compared to values at 1400 m. We conclude that hypoxia-induced splenic contraction at rest (a) may contribute to restoring arterial oxygen content through its [Hb]-enhancing contractile function and (b) eliminates further apnoea-induced [Hb] increases in hypoxia. We suggest that tonic splenic contraction may contribute to haematological acclimatization early in HA ascent in humans.
Keyphrases