Login / Signup

Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe 2 .

Cheng XuJiangxu LiYong XuZhen BiYang Zhang
Published in: Proceedings of the National Academy of Sciences of the United States of America (2024)
We investigate the moiré band structures and the strong correlation effects in twisted bilayer MoTe[Formula: see text] for a wide range of twist angles, employing a combination of various techniques. Using large-scale first-principles calculations, we pinpoint realistic continuum modeling parameters, subsequently deriving the maximally localized Wannier functions for the top three moiré bands. Simplifying our model with reasonable assumptions, we obtain a minimal two-band model, encompassing Coulomb repulsion, correlated hopping, and spin exchange. Our minimal interaction models pave the way for further exploration of the rich many-body physics in twisted MoTe[Formula: see text]. Furthermore, we explore the phase diagrams of the system through Hartree-Fock approximation and exact diagonalization (ED). Our two-band ED analysis underscores significant band-mixing effects in this system, which enlarge the optimal twist angle for fractional quantum anomalous Hall states.
Keyphrases
  • molecular dynamics
  • density functional theory
  • emergency department
  • epithelial mesenchymal transition
  • smoking cessation
  • molecular dynamics simulations
  • room temperature
  • signaling pathway