Metal Oxo-Fluoride Molecules OnMF2 (M = Mn and Fe; n = 1-4) and O2MnF: Matrix Infrared Spectra and Quantum Chemistry.
Tengfei HuangLijuan ZhaoXuelian JiangWenjie YuBing XuXuefeng WangW H Eugen SchwarzJun LiPublished in: Inorganic chemistry (2021)
On reacting laser-ablated manganese or iron difluorides with O2 or O3 during codeposition in solid neon or argon, infrared absorptions of several new metal oxo-fluoride molecules, including OMF2, (η1-O2)MF2, (η2-O3)MF2, (η1-O2)2MF2 (M = Mn and Fe), and O2MnF, have been observed. Quantum chemical density functional and multiconfiguration wavefunction calculations have been applied to characterize these new products by their geometric and electronic structures, vibrations, charges, and bonding. The assignment of the main vibrational absorptions as dominant symmetric or antisymmetric M-F or M-O stretching modes is confirmed by oxygen isotopic shifts and quantum chemical calculations of frequencies and thermal stabilities. The tendency of Fe to form polyoxygen complexes in lower oxidation states than the preceding element Mn is affirmed experimentally and supported theoretically. The M-F stretching frequencies of the isolated metal oxo-fluorides may provide a scale for the local charge on the MF2 sites in active energy conversion systems. The study of these species provides insights for understanding the trend of oxidation state changes across the transition-metal series.