Calcite-Assisted Localization and Kinetics (CLocK) Microscopy.
Joseph W MonaghanZachary J O'DellSanjay SridharBianca ParanzinoVignesh SundaresanKatherine Kallie WilletsPublished in: The journal of physical chemistry letters (2022)
Localization-based super-resolution imaging techniques have improved the spatial resolution of optical microscopy well below the diffraction limit, yet encoding additional information into super-resolved images, such as anisotropy and orientation, remains a challenge. Here we introduce calcite-assisted localization and kinetics (CLocK) microscopy, a multiparameter super-resolution imaging technique easily integrated into any existing optical microscope setup at low cost and with straightforward analysis. By placing a rotating calcite crystal in the infinity space of an optical microscope, CLocK microscopy provides immediate polarization and orientation information while maintaining the ability to localize an emitter/scatterer with <10 nm resolution. Further, kinetic information an order of magnitude shorter than the integration time of the camera is encoded in the unique point spread function of a CLocK image, allowing for new mechanistic insight into dynamic processes such as single-nanoparticle dissolution and single-molecule surface-enhanced Raman scattering.