Poly (3-hexylthiophene) (P3HT) Crystalsomes: Tiling 1D Polymer Crystals on a Spherical Surface.
Mark Clyde StaubShichen YuChristopher Yuren LiPublished in: Macromolecular rapid communications (2022)
Polymer crystalsomes are a class of hollow crystalline polymer nanoparticles with shells formed by single crystals with broken translational symmetry. They have shown intriguing mechanical, thermal, and biomedical properties associated with spherical packing. Previously reported crystalsomes are formed by quasi-2D lamellae which can readily tile on a spherical surface. In this work, the formation of polymer crystalsomes formed by 1D polymer crystals is reported. Poly (3-hexylthiophene) (P3HT) is chosen as the model polymer because of its 1D growth habit. P3HT crystalsomes are successfully fabricated using a miniemulsion solution crystallization method, as confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction (XRD) and selected area electron diffraction experiments confirm that P3HT crystallized into a Form I crystal structure. XRD, differential scanning calorimetry and UV-Vis results reveal curvature-dependent structural, thermal and electro-optical properties.