Login / Signup

Quantifying Chemical Reactions and Interfacial Properties at Buried Polymer/Polymer Interfaces.

Daniel RossiYifan DongRajesh ParadkarXiaoyun ChenYuchen WuCarol MohlerTzu-Chi KuoZhan Chen
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Maleic anhydride (MAH)-modified polymers are used as tie layers for binding dissimilar polymers in multilayer polymer films. The MAH chemistry which promotes adhesion is well characterized in the bulk; however, only recently has the interfacial chemistry been studied. Sum frequency generation vibrational spectroscopy (SFG) is an interfacial spectroscopy technique which provides detailed information on interfacial chemical reactions, species, and molecular orientations and has been essential for characterizing the MAH chemistry in both nylon and ethyl vinyl alcohol copolymer (EVOH) model systems and coextruded multilayer films. Here, we further characterize the interfacial chemistry between MAH-modified polyethylene tie layers and both EVOH and nylon by investigating the model systems over a range of MAH concentrations. We can detect the interfacial chemical reaction products between MAH and the barrier layer at MAH concentrations of ≥0.022 wt % for nylon and ≥0.077 wt % for EVOH. Additionally, from the concentration-dependent reaction reactant/product SFG peak positions and the product imide or ester/acid C═O group tilt angles extracted from the polarization-dependent SFG spectra, we quantitatively observe concentration-dependent changes to both the interfacial chemistry and interfacial structure. The interfacial chemistry and molecular orientation as a function of MAH concentration are well correlated with the adhesion strength, providing important quantitative information for the future design of MAH-modified tie layers for a variety of important applications.
Keyphrases