On-Device Pressure-Tunable Moving Schottky Contacts.
Zhaokuan YuXuanyu HuangJinbo BianYuqing HeXin LuQuanshui ZhengZhiping XuPublished in: Nano letters (2024)
Contact engineering enhances electronic device performance and functions but often involves costly, inconvenient fabrication and material replacement processes. We develop an in situ , reversible, full-device-scale approach to reconfigurable 2D van der Waals contacts. Ideal p-type Schottky contacts free from surface dangling bonds and Fermi-level pinning are constructed at structurally superlubric graphite-MoS 2 interfaces. Pressure control is introduced, beyond a threshold of which tunneling across the contact can be activated and amplified at higher loads. Record-high figures of merits such an ideality factor nearing 1 and an off-state current of 10 -11 A were reported. The concept of on-device moving contacts is demonstrated through a wearless Schottky generator, operating with an optimized overall efficiency of 50% in converting weak, random external stimuli into electricity. The device combines generator and pressure-sensor functions, achieving a high current density of 31 A/m 2 and withstanding over 120,000 cycles, making it ideal for neuromorphic computing and mechanosensing applications.
Keyphrases