Login / Signup

Closing the gap between 19F and 18F chemistry.

Javier AjenjoGianluca DestroBart CornelissenVéronique Gouverneur
Published in: EJNMMI radiopharmacy and chemistry (2021)
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Keyphrases
  • positron emission tomography
  • drug discovery
  • computed tomography
  • transition metal
  • pet imaging
  • pet ct
  • visible light
  • drinking water
  • quality improvement
  • room temperature