Sequential Treatments with Tongsai and Bufei Yishen Granules Reduce Inflammation and Improve Pulmonary Function in Acute Exacerbation-Risk Window of Chronic Obstructive Pulmonary Disease in Rats.
Xiaofan LuYa LiJian-Sheng LiHaifeng WangZhaohuan WuHangjie LiYang WangPublished in: Evidence-based complementary and alternative medicine : eCAM (2016)
Background. Sequential treatments of Chinese medicines for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) risk window (RW) have benefits for preventing reoccurrences of AEs; however, the effects on pulmonary function, pulmonary, and systemic inflammatory biomarkers remain unclear. Methods. Cigarette-smoke/bacterial infections induced rats were randomized into Control, COPD, AECOPD, Tongsai Granule/normal saline (TSG/NS), moxifloxacin + salbutamol/NS (MXF+STL/NS), TSG/Bufei Yishen Granule (BYG), MXF+STL/STL, and TSG+MXF+STL/BYG+STL groups and given corresponding medicine(s) in AE- and/or RW phase. Body temperature, pulmonary function, blood cytology, serum amyloid A (SAA) and C-reactive protein (CRP), pulmonary histomorphology and myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, interleukins IL-1β, IL-6, and IL-10, and tumor necrosis factor- (TNF-) α expressions were determined. Results. Body temperature, inflammatory cells and cytokines, SAA, CRP, and pulmonary impairment were higher in AECOPD rats than stable COPD, while pulmonary function declined and recovered to COPD level in 14-18 days. All biomarkers were improved in treated groups with shorter recovery times of 4-10 days, especially in TSG+MXF+STL/BYG+STL group. Conclusion. Sequential treatments with Tongsai and Bufei Yishen Granules, during AECOPD-RW periods, can reduce inflammatory response and improve pulmonary function and shorten the recovery courses of AEs, especially the integrated Chinese and Western medicines.
Keyphrases
- chronic obstructive pulmonary disease
- pulmonary hypertension
- inflammatory response
- lung function
- respiratory failure
- oxidative stress
- drug induced
- dengue virus
- rheumatoid arthritis
- induced apoptosis
- open label
- lipopolysaccharide induced
- cell cycle arrest
- zika virus
- aortic dissection
- air pollution
- cell proliferation
- phase iii
- endothelial cells
- lps induced
- newly diagnosed
- signaling pathway
- fine needle aspiration
- breast cancer risk
- endoplasmic reticulum stress
- placebo controlled
- mechanical ventilation