Weakly supervised lesion localization for age-related macular degeneration detection using optical coherence tomography images.
Hyun-Lim YangJong Jin KimJong Ho KimYong-Koo KangDong Ho ParkHan Sang ParkHong Kyun KimMin-Soo KimPublished in: PloS one (2019)
Age-related macular degeneration (AMD) is the main cause of irreversible blindness among the elderly and require early diagnosis to prevent vision loss, and careful treatment is essential. Optical coherence tomography (OCT), the most commonly used imaging method in the retinal area for the diagnosis of AMD, is usually interpreted by a clinician, and OCT can help diagnose disease on the basis of the relevant diagnostic criteria, but these judgments can be somewhat subjective. We propose an algorithm for the detection of AMD based on a weakly supervised convolutional neural network (CNN) model to support computer-aided diagnosis (CAD) system. Our main contributions are the following three things. (1) We propose a concise CNN model for OCT images, which outperforms the existing large CNN models using VGG16 and GoogLeNet architectures. (2) We propose an algorithm called Expressive Gradients (EG) that extends the existing Integrated Gradients (IG) algorithm so as to exploit not only the input-level attribution map, but also the high-level attribution maps. Due to enriched gradients, EG can highlight suspicious regions for diagnosis of AMD better than the guided-backpropagation method and IG. (3) Our method provides two visualization options: overlay and top-k bounding boxes, which would be useful for CAD. Through experimental evaluation using 10,100 clinical OCT images from AMD patients, we demonstrate that our EG algorithm outperforms the IG algorithm in terms of localization accuracy and also outperforms the existing object detection methods in terms of class accuracy.
Keyphrases
- age related macular degeneration
- optical coherence tomography
- convolutional neural network
- deep learning
- machine learning
- diabetic retinopathy
- optic nerve
- coronary artery disease
- loop mediated isothermal amplification
- label free
- real time pcr
- high resolution
- neural network
- newly diagnosed
- ejection fraction
- prognostic factors
- depressive symptoms
- working memory
- community dwelling