Changes in temperature alter the potential outcomes of virus host shifts.
Katherine E RobertsJarrod D HadfieldManmohan D SharmaBen LongdonPublished in: PLoS pathogens (2018)
Host shifts-where a pathogen jumps between different host species-are an important source of emerging infectious disease. With on-going climate change there is an increasing need to understand the effect changes in temperature may have on emerging infectious disease. We investigated whether species' susceptibilities change with temperature and ask if susceptibility is greatest at different temperatures in different species. We infected 45 species of Drosophilidae with an RNA virus and measured how viral load changes with temperature. We found the host phylogeny explained a large proportion of the variation in viral load at each temperature, with strong phylogenetic correlations between viral loads across temperature. The variance in viral load increased with temperature, while the mean viral load did not. This suggests that as temperature increases the most susceptible species become more susceptible, and the least susceptible less so. We found no significant relationship between a species' susceptibility across temperatures, and proxies for thermal optima (critical thermal maximum and minimum or basal metabolic rate). These results suggest that whilst the rank order of species susceptibilities may remain the same with changes in temperature, some species may become more susceptible to a novel pathogen, and others less so.