Login / Signup

Enantiomer-Selective Characterization of the Adsorption, Dissipation, and Phytotoxicity of the Plant Monoterpene Pulegone in Soils.

Jose Antonio Galán-PérezBeatriz GámizIvana PavlovicRafael Celis
Published in: Plants (Basel, Switzerland) (2022)
Plant monoterpenes have received attention for their ecological functions and as potential surrogates for synthetic herbicides, but very little is known about the processes that govern their behavior in the soil environment, and even less about the possible enantioselectivity in the functions and environmental behavior of chiral monoterpenes. We characterized the adsorption and dissipation of the two enantiomers of the chiral monoterpene pulegone in different soils, and their phytotoxicity to different plant species through Petri dish and soil bioassays. R- and S-pulegone displayed a low-to-moderate non-enantioselective adsorption on the soils that involved weak interaction mechanisms. Soil incubation experiments indicated that, once in the soil, R- and S-pulegone are expected to suffer rapid volatilization and scarcely enantioselective, biodegradation losses. In Petri dishes, the phytotoxicity of pulegone and its enantioselectivity to Lactuca sativa , Hordeum vulgare , and Eruca sativa was species-dependent. Lactuca sativa was the most sensitive species and showed higher susceptibility to S- than to R-pulegone. Biodegradation and volatilization losses greatly reduced the phytotoxic activity of S-pulegone applied to soil, but the addition of a highly-adsorptive organoclay stabilized the monoterpene and increased its phytotoxic effect. Stabilization by adsorption may represent an important mechanism by which the bioactivity of plant monoterpenes in soils can be increased.
Keyphrases
  • human health
  • heavy metals
  • plant growth
  • aqueous solution
  • risk assessment
  • working memory
  • high intensity
  • cell wall