Login / Signup

Synthetic, self-oscillating vocal fold models for voice production researcha).

Scott L Thomson
Published in: The Journal of the Acoustical Society of America (2024)
Sound for the human voice is produced by vocal fold flow-induced vibration and involves a complex coupling between flow dynamics, tissue motion, and acoustics. Over the past three decades, synthetic, self-oscillating vocal fold models have played an increasingly important role in the study of these complex physical interactions. In particular, two types of models have been established: "membranous" vocal fold models, such as a water-filled latex tube, and "elastic solid" models, such as ultrasoft silicone formed into a vocal fold-like shape and in some cases with multiple layers of differing stiffness to mimic the human vocal fold tissue structure. In this review, the designs, capabilities, and limitations of these two types of models are presented. Considerations unique to the implementation of elastic solid models, including fabrication processes and materials, are discussed. Applications in which these models have been used to study the underlying mechanical principles that govern phonation are surveyed, and experimental techniques and configurations are reviewed. Finally, recommendations for continued development of these models for even more lifelike response and clinical relevance are summarized.
Keyphrases
  • physical activity
  • mental health
  • quality improvement
  • high frequency
  • high speed