Login / Signup

Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy.

Bianca A da SilvaMichael NazarkovskyHelmut Isaac Padilla-ChavarríaEdith Alejandra C MendivelsoHeber L de MelloCauê de S C NogueiraRafael Dos Santos CarvalhoMarco CremonaVolodymyr ZaitsevYutao XingRodrigo da Cunha BisaggioLuiz A AlvesJiang Kai
Published in: Pharmaceutics (2022)
The development of X-ray-absorbing scintillating nanoparticles is of high interest for solving the short penetration depth problem of visible and infrared light in photodynamic therapy (PDT). Thus, these nanoparticles are considered a promising treatment for several types of cancer. Herein, gadolinium oxide nanoparticles doped with europium ions (Gd 2 O 3 :Eu 3+ ) were obtained by using polyvinyl alcohol as a capping agent. Hybrid silica nanoparticles decorated with europium-doped gadolinium oxide (SiO 2 -Gd 2 O 3 :Eu 3+ ) were also prepared through the impregnation method. The synthesized nanoparticles were structurally characterized and tested to analyze their biocompatibility. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy confirmed the high crystallinity and purity of the Gd 2 O 3 :Eu 3+ particles and the homogeneous distribution of nanostructured rare earth oxides throughout the fumed silica matrix for SiO 2 -Gd 2 O 3 :Eu 3+ . Both nanoparticles displayed stable negative ζ-potentials. The photoluminescence properties of the materials were obtained using a Xe lamp as an excitation source, and they exhibited characteristic Eu 3+ bands, including at 610 nm, which is the most intense transition band of this ion. Cytotoxicity studies on mouse glioblastoma GL261 cells indicated that these materials appear to be nontoxic from 10 to 500 μg·mL -1 and show a small reduction in viability in non-tumor cell lines. All these findings demonstrate their possible use as alternative materials in PDT.
Keyphrases