Development and Validation of Stability-Indicating HPLC Methods for the Estimation of Lomefloxacin and Balofloxacin Oxidation Process under ACVA, H2O2, or KMnO4 Treatment. Kinetic Evaluation and Identification of Degradation Products by Mass Spectrometry.
Barbara Żuromska-WitekPaweł ŻmudzkiMarek SzlósarczykAnna MaślankaUrszula HubickaPublished in: Molecules (Basel, Switzerland) (2020)
The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4'-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB-C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.
Keyphrases
- ms ms
- simultaneous determination
- liquid chromatography
- hydrogen peroxide
- mass spectrometry
- room temperature
- solid phase extraction
- high performance liquid chromatography
- tandem mass spectrometry
- electron transfer
- liquid chromatography tandem mass spectrometry
- high resolution
- ultra high performance liquid chromatography
- visible light
- high resolution mass spectrometry
- ionic liquid
- nitric oxide
- combination therapy
- protein kinase
- bioinformatics analysis
- smoking cessation