Login / Signup

Nonplanar π-Conjugated Sulfur Heterocyclic Quinone Polymer Cathode for Air-Rechargeable Zinc/Organic Battery with Simultaneously Boosted Output Voltage, Rate Capability, and Cycling Life.

Xin ShiAng YiQiyu LiuYan ZhangShiwei LinXiaoqing Liu
Published in: ACS nano (2023)
π-conjugated organic compounds with a good charge transfer ability and rich redox functional groups are promising cathode candidates for air-rechargeable aqueous Zn-based batteries (AAZBs). However, the output voltage of even the state-of-the-art π-conjugated organic cathodes lies well below 0.8 V, resulting in insufficient energy density. Herein, we design a nonplanar π-conjugated sulfur heterocyclic quinone polymer (SHQP) as an advanced cathode material for AAZBs by polymerization 1,4-Benzoquinone (BQ) and S heteroatoms periodically. The extended π-conjugated plane and enhanced aromaticity endow SHQP with a more sensitive charge transfer ability and robust structure. Furthermore, the delocalized π electrons in the whole system are insufficient as the π orbit of the S heteroatom is not in the same plane with the π orbit of BQ due to its folded configuration, resulting in negligible variation of electron density around C═O after the polymerization. Thus, the output voltage of SHQP shows no significant decrease even though the thioether bond (-S-) functions as electron donor. Consequently, the Zn/SHQP AAZBs can deliver a record high midpoint discharging voltage (0.95 V), rate performance (119 mAh g -1 at 10 A g -1 ), and durability (98.7% capacity retention after 200 cycles) across a wide temperature range.
Keyphrases
  • photodynamic therapy
  • solar cells
  • ion batteries
  • heavy metals
  • reduced graphene oxide
  • water soluble
  • risk assessment
  • high intensity
  • solid state
  • oxide nanoparticles