Login / Signup

Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions.

Mojtaba Madadi AslSaeideh Ramezani Akbarabadi
Published in: PloS one (2021)
Synaptic strengths between neurons in brain networks are highly adaptive due to synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity induced by temporal correlations between the firing activity of neurons. The development of experimental techniques in recent years enabled the realization of brain-inspired neuromorphic devices. Particularly, magnetic tunnel junctions (MTJs) provide a suitable means for the implementation of learning processes in molecular junctions. Here, we first considered a two-neuron motif subjected to STDP. By employing theoretical analysis and computer simulations we showed that the dynamics and emergent structure of the motif can be predicted by introducing an effective two-neuron synaptic conductance. Then, we considered a phenyl-based single-molecule MTJ connected to two ferromagnetic (FM) cobalt electrodes and investigated its electrical properties using the non-equilibrium Green's function (NEGF) formalism. Similar to the two-neuron motif, we introduced an effective spin-polarized conductance in the MTJ. Depending on the polarity, frequency and strength of the bias voltage applied to the MTJ, the system can learn input signals by adaptive changes of the effective conductance. Interestingly, this voltage-dependent plasticity is an intrinsic property of the MTJ where its behavior is reminiscent of the classical temporally asymmetric STDP. Furthermore, the shape of voltage-dependent plasticity in the MTJ is determined by the molecule-electrode coupling strength or the length of the molecule. Our results may be relevant for the development of single-molecule devices that capture the adaptive properties of synapses in the brain.
Keyphrases