Login / Signup

Variations in Proline Content, Polyamine Profiles, and Antioxidant Capacities among Different Provenances of European Beech ( Fagus sylvatica L.).

Marko KebertSrđan StojnićMilena RašetaSaša KostićVanja VuksanovićMladen IvankovićMiran LanšćakAnđelina Gavranović Markić
Published in: Antioxidants (Basel, Switzerland) (2024)
International provenance trials are a hot topic in forestry, and in light of climate change, the search for more resilient beech provenances and their assisted migration is one of the challenges of climate-smart forestry. The main aim of the study was to determine intraspecific variability in European beech ( Fagus sylvatica L.) among 11 beech provenances according to total antioxidant capacities estimated by various assays, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid), FRAP (ferric reducing antioxidant power) assay, and radical scavenging capacity against nitric oxide (RSC-NO assays), as well as osmolyte content, primarily individual polyamines (putrescine, spermidine, and spermine), and free proline content. Polyamine amounts were quantified by using HPLC coupled with fluorescent detection after dansylation pretreatment. The highest values for radical scavenger capacity assays (ABTS, DPPH, and FRAP) were measured in the German provenances DE47 and DE49. Also, the highest NO inhibition capacity was found in the provenance DE49, while the highest content of proline (PRO), total phenolic content (TPC), and total flavonoid content (TFC) was recorded in DE47. The Austrian AT56 and German provenance DE49 were most abundant in total polyamines. This research underlines the importance of the application of common antioxidant assays as well as osmolyte quantification as a criterion for the selection of climate-ready beech provenances for sustainable forest management.
Keyphrases