Login / Signup

Catalytic transport of molecular cargo using diffusive binding along a polymer track.

Lifei ZhengHui ZhaoYanxiao HanHaibin QianLela VukovicJasmin MecinovicPetr KrálWilhelm T S Huck
Published in: Nature chemistry (2019)
Transport at the molecular scale is a prerequisite for the development of future molecular factories. Here, we have designed oligoanionic molecular sliders on polycationic tracks that exploit Brownian motion and diffusive binding to transport cargo without using a chemical fuel. The presence of the polymer tracks increases the rate of bimolecular reactions between modified sliders by over two orders of magnitude. Molecular dynamics simulations showed that the sliders not only diffuse, but also jump and hop surprisingly efficiently along polymer tracks. Inspired by acetyl-coenzyme A transporting and delivering acetyl groups in many essential biochemical processes, we developed a new and unconventional type of catalytic transport involving sliders (including coenzyme A) picking up, transporting and selectively delivering molecular cargo. Furthermore, we show that the concept of diffusive binding can also be utilized for the spatially controlled transport of chemical groups across gels. This work represents a new concept for designing functional nanosystems based on random Brownian motion.
Keyphrases
  • molecular dynamics simulations
  • single molecule
  • high speed
  • low grade