A programming toolbox for calculating beta-Euler shape exponents from plant growth data.
Jerzy KosekMariusz A PietruszkaPublished in: General physiology and biophysics (2024)
Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.