Login / Signup

Foliar Application of CeO2 Nanoparticles Alters Generative Components Fitness and Seed Productivity in Bean Crop (Phaseolus vulgaris L.).

Hajar SalehiAbdolkarim Chehregani RadAli RazaJen-Tsung Chen
Published in: Nanomaterials (Basel, Switzerland) (2021)
In the era of technology, nanotechnology has been introduced as a new window for agriculture. However, no attention has been paid to the effect of cerium dioxide nanoparticles (nCeO2) on the reproductive stage of plant development to evaluate their toxicity and safety. To address this important topic, bean plants (Phaseolus vulgaris L.) treated aerially with nCeO2 suspension at 250-2000 mg L-1 were cultivated until flowering and seed production in the greenhouse condition. Microscopy analysis was carried out on sectioned anthers and ovules at different developmental stages. The pollen's mother cell development in nCeO2 treatments was normal at early stages, the same as control plants. However, the results indicated that pollen grains underwent serious structural damages, including chromosome separation abnormality at anaphase I, pollen wall defect, and pollen grain malformations in nCeO2-treated plants at the highest concentration, which resulted in pollen abortion and yield losses. On the ovule side, the progression of development only at the highest concentration was modified in the two-nucleated embryo sac stage, probably due to apoptosis in nuclei. Nevertheless, the findings confirmed the more pronounced vulnerability of male reproductive development under nCeO2 exposure than female development. The higher concentration decreased seed productivity, including seed set in either pods or whole plant (13% and 18% compared to control, respectively). The data suggested the potential application of nCeO2 at optimal dosages as a plant productivity ameliorative. However, a higher dosage is considered as an eco-environmental hazard. To our best knowledge, this is the first study analyzing reproductive plant response upon exposure to nCeO2.
Keyphrases
  • climate change
  • healthcare
  • stem cells
  • working memory
  • high throughput
  • cell therapy
  • mass spectrometry
  • newly diagnosed
  • electronic health record
  • cell wall
  • copy number
  • human health
  • high speed