Login / Signup

A Soft Capsule for Magnetically Driven Drug Delivery Based on a Hard-Magnetic Elastomer Foam.

Xiao SunPan ZhangZi YeLei LiQian LiHuimin ZhangBingxin LiuLin Gui
Published in: ACS biomaterials science & engineering (2023)
Drug delivery systems based on porous soft biomaterials have been widely reported because of stimuli-responsive drug release and their inherent reservoirs for drug storage. Especially, magnetic-responsive porous soft biomaterials achieve rapid and real-time control of drug release due to the magnetic field-triggered large deformation. However, the drug release profiles of these materials are difficult to predict and repeat, which restrict them from releasing drugs in the required dosage. Here, we report a soft capsule based on a flexible hard-magnetic elastomer foam (HEF) for magnetically controlled on-demand drug delivery. The HEF capsule contains an inner HEF and an outer elastomer shell. The HEF exhibits low elastic modulus (10 kPa) and highly interconnected pores (81% interconnected pores). Benefitting from the novel precompressed magnetization, the compressive deformation of HEF reaches 66%. Thus, an adjustable drug release rate ranging from 0.02 to 1.7 mL/min in the HEF capsule is achieved. The deformation-triggered drug release profiles of the HEF capsule under the magnetic field are accurately predicted, allowing 85% accuracy in drug dosage regulation and more than 90% maximum cumulative drug release. Especially, the HEF capsule is proven capable of acting as a soft robot to perform magnetically driven drug delivery in a human stomach model. HEF can potentially serve as a soft robot for biomedical applications in the human body.
Keyphrases
  • drug release
  • drug delivery
  • cancer therapy
  • endothelial cells
  • electronic health record
  • loop mediated isothermal amplification