Rapid fabrication of gelatin-based scaffolds with prevascularized channels for organ regeneration.
Qingxi HuHaihu TangYuan YaoSuihong LiuHaiguang ZhangMurugan RamalingamPublished in: Biomedical materials (Bristol, England) (2021)
One of the biggest hinders in tissue engineering over the last decades was the complexity of the prevascularized channels of the engineered scaffold, which was still lower than that of human tissues. Another relative trouble was lacking precision molding capability, which restricted the clinical applications of the huge engineered scaffold. In this study, a promising approach was proposed to prepare hydrogel scaffold with prevascularized channels by liquid bath printing, which chitosan/β-sodium glycerophosphate (CS/β-GP) severed as the ink hydrogel, and gelation/nanoscale bacterial cellulose (Gel/BC) acted as the supporting hydrogel. Here, the ink hydrogel was printed by a versatile nozzle and embedded in the supporting hydrogel. Ink hydrogel transformed into liquid effluent at low temperature after cross-linking of gelatin by microbial transglutaminase (mTG). No residual template was seen on the channel surface after template removal. This preparation had a high degree of freedom in the geometry of the channel, which was demonstrated by making various prevascularized channels including circular, branched, and tree-shaped networks. The molding accuracy of the channel was detected by studying the roundness of the cross-section of the molded hollow channel, and the effect of the mechanical properties by adding BC to supporting hydrogel was analyzed. Human umbilical vein endothelial cells (HUVECs) were injected into the aforementioned channels and formed confluent and homogeneous distribution on the surface of channels. Altogether, these results showed that this approach can construct hydrogel scaffold with complex and accurate molding prevascularized channels, and had great potential to resolve urgent vascularization issue of bulk tissue-engineering scaffold.