Login / Signup

Time Resolved-Fluorescence Resonance Energy Transfer platform for quantitative nucleosome binding and footprinting.

Nathaniel A WesleyAleksandra SkrajnaHolly C SimmonsGabrielle R BudziszewskiDalal N AzzamAndrew P CesmatRobert K McGinty
Published in: Protein science : a publication of the Protein Society (2022)
Quantitative analysis of chromatin protein-nucleosome interactions is essential to understand regulation of genome-templated processes. However, current methods to measure nucleosome interactions are limited by low throughput, low signal-to-noise, and/or the requirement for specialized instrumentation. Here, we report a Lanthanide Chelate Excite Time-Resolved Fluorescence Resonance Energy Transfer (LANCE TR-FRET) assay to efficiently quantify chromatin protein-nucleosome interactions. The system makes use of commercially available reagents, offers robust signal-to-noise with minimal sample requirements, uses a conventional fluorescence microplate reader, and can be adapted for high-throughput workflows. We determined the nucleosome-binding affinities of several chromatin proteins and complexes, which are consistent with measurements obtained through orthogonal biophysical methods. We also developed a TR-FRET competition assay for high-resolution footprinting of chromatin protein-nucleosome interactions. Finally, we set up a TR-FRET competition assay using the LANA peptide to quantitate nucleosome acidic patch binding. We applied this assay to establish a proof-of-principle for regulation of nucleosome acidic patch binding by methylation of chromatin protein arginine anchors. Overall, our TR-FRET assays allow facile, high-throughput quantification of chromatin interactions and are poised to complement mechanistic chromatin biochemistry, structural biology, and drug discovery programs.
Keyphrases